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ABSTRACT
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The
workflow combines seismic tomography (full-waveform inversion) and rock physics
inversion and is applied to a two-dimensional seismic line located near the injection
point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and mon-
itor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave
velocity models are generated using the Full waveform inversion technology and then,
we invert selected rock physics parameters using an rock physics inversion methodol-
ogy. Full waveform inversion provides high-resolution P-wave velocity models both
for baseline and monitor data. The physical relations between rock physics proper-
ties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir
formation) are defined using a dynamic rock physics model based on well-known
Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity,
bulk and shear dry moduli) are estimated using rock physics inversion that allows
deriving physically consistent properties with related uncertainty. We show that the
uncertainty related to limited input data (only P-wave velocity) is not an issue because
the mean values of parameters are correct. These rock frame properties are then used
as a priori constraint in the monitor case. For monitor data, the Full waveform in-
version results show nicely resolved thin layers of CO2–brine saturated sandstones
under intra-reservoir shale layers. The CO2 saturation estimation is carried out by
plugging an effective fluid phase in the rock physics model. Calculating the effective
fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is
shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion
tests are done with several values of Brie/patchiness exponent and show that the
CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock
physics model and the location in the reservoir. The uncertainty in CO2 saturation
estimation is usually lower than 0.20. When the patchiness exponent is considered as
unknown, the inversion is less constrained and we end up with values of exponent
varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations
tend to show that the CO2–brine mixing is between uniform and patchy mixing and
variable throughout the reservoir.

Key words: CO2 storage monitoring, Full Waveform Inversion, Rock physics inver-
sion, Quantitative imaging, Saturation estimation.

INTRODUCTION

The global warming is gaining lots of attention in the last
decade with the increasing energy demand and fossil energy

∗E-mail: bastien.dupuy@sintef.no

consumption. Excessive CO2 emissions that have a substantial
contribution to the global warming (Metz et al. 2005) require
the implementation of immediate mitigation measures. The
CO2 Capture and Storage (CCS) technology is hence proposed
as a mean to reduce the CO2 emission into the atmosphere.
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Large CO2 storage capacity has already been proven in deep
saline aquifers (Halland et al. 2011; Böhm et al. 2015). The
Sleipner CO2 storage site is the first commercial-scale offshore
storage operation and the longest in operation in the world.
Geophysical monitoring (including seismic and non-seismic
techniques) is used to monitor the subsurface changes related
to the CO2 plume migration, in order to verify conformance
and early detection of potential leakage (containment moni-
toring).

The seismic monitoring programme at Sleipner includes
a three-dimensional baseline survey prior to CO2 injection
and several monitor surveys every 2–3 years (Arts et al. 2008;
Furre, Kiær and Eiken 2015; Furre et al. 2017). Previous stud-
ies based on time-lapse analysis help to reveal the details of
the CO2 plume development ( Eiken et al. 2000; Arts et al.

2002; Arts et al. 2004). Structural mapping and frequency de-
composition have been used to estimate the upper most layer
thickness (Williams and Chadwick 2012; White 2013). Arts
et al. (2002) give quantitative estimates of CO2 mass using
amplitude information. More recently, Furre et al. (2015) per-
form a detailed analysis of the thin CO2 layers, with respect
to time shift development and amplitude changes.

The proper understanding of saturation development
in Utsira sandstone has been widely studied by several au-
thors. Ghaderi and Landrø (2009) use seismic modelling of
thin layer responses and propose a simultaneous inversion
of velocity and layer thicknesses of partially saturated lay-
ers with CO2. Post-stack impedance analysis (Ghosh, Sen
and Vedanti 2015) and time-lapse Amplitude Versus Off-
set (AVO) analysis (Chadwick et al. 2010) have been ap-
plied to estimate CO2 saturations. Bergmann and Chadwick
(2015) propose a method using time-shift analysis to esti-
mate the influence of fluid mixing law both with synthetic
and real data. As an alternative, quantitative maps of veloc-
ity properties derived at Sleipner using full waveform inver-
sion (FWI) have been used as input to estimate saturation
distributions. Queiber and Singh (2013) and Romdhane and
Querendez (2014) apply FWI in order to derive highly re-
solved P-wave velocity models. Queiber and Singh (2013)
use simple rock physics relations (Gassmann (1951) model
combined with Brie’s law (Brie et al. 1995)) to describe the
CO2 and brine mixture from the P-wave velocity. Dupuy,
Garambois and Virieux (2016) propose a two-step workflow
with dynamic rock physics models to tackle the existing lim-
itation in frequency sensitivity and obtain reliable reservoir
properties from high-resolution velocity models. Sensitivity
studies have highlighted that extra input data in the inver-
sion process, such as shear wave velocity and P-wave quality

factors are important for the estimation of rock frame mod-
uli and can be helpful to better constrain in the estimation of
CO2 saturation (Böhm et al. 2015; Dupuy et al. 2016; Dupuy
et al. 2017). At Sleipner, Dupuy et al. (2017) show however
that the estimation of CO2 saturations from P-wave velocity
models derived from FWI is still possible.

In this work, FWI is combined with the rock physics in-
version (RPI) method to invert for selected poroelastic prop-
erties (rock frame moduli, porosity, CO2 saturation and Brie
patchiness exponent) and to derive high-resolution maps of
CO2 saturation with uncertainty. Data from 1994 and 2008
vintages are used. The rock frame properties are recovered us-
ing baseline data and used as a priori parameters to estimate
CO2 saturation distribution with the monitor dataset. We in-
vert the CO2 saturation and other properties for the monitor
case and we constrain the inversion using a priori geologi-
cal information (fluid properties, grain properties, permeabil-
ity and cementation factor) and a priori information derived
from the baseline results (bulk modulus, shear modulus and
porosity). We also analyse how the Brie exponent, describ-
ing the fluids distribution (from uniform to patchy mixing), is
affecting the results.

This paper is divided into four sections. While the first
part gives the methodology workflow, the second section pro-
vides a short description of the geological context at Sleip-
ner justifying the choice of some a priori parameters. Tests
presented in section 3 provides expected sensitivities for es-
timation of rock frame properties and CO2 saturation and
distribution. The case study at Sleipner, for both baseline and
monitor data are described in section 4.

METHODOLOGY

We use a two-step workflow combining full waveform inver-
sion (FWI) and rock physics inversion (RPI) methods. From
FWI, we generate a P-wave velocity model that is used as input
of the RPI step.

FWI is performed in the frequency-space domain (Pratt,
Shin and Hick 1998). The two-dimensional acoustic wave
equation is solved using finite differences with the mixed grid
approach (Hustedt, Operto and Virieux 2004). The inverse
problem is solved using a pre-conditioned gradient algorithm.
The gradient method in its standard form provides a rela-
tionship between the perturbation model and the data resid-
uals. An approximation of the Hessian operator with only
the diagonal elements is used to save computation cost. Ba-
sic data pre-processing steps (including quality control of the
data, offset selection, muting and coordinate transformation)
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are performed before running the inversion (Romdhane and
Querendez 2014). We derive an initial P-wave velocity model
using root mean square velocity in time converted into inter-
val velocity in depth. The misfit function and the gradient of
the misfit at iteration n can be expressed:

ξ (m) = 1
2

∥∥d mod − dobs

∥∥2
,

∂ξ (mn)
∂m = �e

{
JTδd∗} ,

(1)

where ∂ξ (mn)
∂m is the gradient of the misfit at iteration n. dmod

and dobs are the modelled and observed data, respectively. �e

is the real part of a complex number. J denotes the Jacobian
matrix, thus JT is the transpose of the Jacobian matrix. δd∗

denotes the conjugate of the data residuals. The perturbation
model is given by:

δmn = mn+1 − mn. (2)

The gradient method can be formulated as the link
between the perturbation model and data residuals, and is
given as:

δmn = −αn
∂ξ (mn)

∂m
, (3)

where αn is the step length at iteration n. Proper scaling and
regularization can be applied to ensure the computational sta-
bility. The approximate Hessian Ha can be written:

Ha = �e
{

JTJ∗} . (4)

If we only consider the diagonal term of the approximate
Hessian, the model update at iteration n becomes:

δmn = −αn(diagHan
+ λI)−1 ∂ξ (mn)

∂m
, (5)

where λ denotes a damping parameter used to ensure compu-
tational stability.

The second step consists in solving the inverse prob-
lem linking seismic properties and rock physics properties.
The link between rock physics parameters and seismic at-
tributes constitutes the forward problem, usually called the
rock physics model. The forward problem can be described in
a generic manner by Biot–Gassmann theory (Gassmann 1951;
Biot 1956a) as long as rock frame properties are somehow de-
fined or estimated.

The Biot–Gassmann equations are valid under several as-
sumptions. The Gassmann equations are valid within a low
frequency limit and do not account for the chemical interac-
tion between the grains and the fluid phases. The Biot theory
is limited to homogeneous and isotropic media, which consists
of only one type of grain. To be more realistic, Pride (2005)

extended the Biot–Gassmann equations and included a gen-
eralized dynamic permeability (Johnson, Koplik and Dashen
1987). The extended Biot–Gassmann theory can be applied to
a multi-composite material saturated with a multi-fluid mix-
ture using averaging techniques. In addition, this approach is
valid within a wide frequency range. More details on the as-
sumptions and theory for this rock physics model are given in
Pride (2005). The extensive Biot–Gassmann equations allow
us to calculate the viscoelastic attributes for an effective fluid
phase even if only P-wave velocity is used.

Biot (1956b) demonstrates that there are three types of
waves propagating in a fluid saturated porous medium. These
are compressional wave (P-wave), shear wave (S-wave) and
an additional slow compressional wave (Biot wave or slow
P-wave). The slowness of P-wave is formulated by Pride
(2005) as:

S2
P (ω) = γ (ω)

2
− 1

2

√
γ 2(ω) − 4

(
ρρ̃(ω) − ρ2

f

)
HM − C2

. (6)

Thus, we can deduce the effective P-wave velocity as:

Vp(ω) = 1
Re

(
Sp(ω)

) . (7)

In equation (6), ρ and ρf and ρ̃(ω) are the bulk den-
sity, the effective fluid density and the flow resistance term,
respectively. Note that ω is the complex pulsation and is in-
volved in frequency-dependent terms such as ρ̃(ω) and γ (ω).
The undrained bulk modulus KU, the Biot modulus C, the
shear modulus G and the fluid storage coefficient M are the
four mechanical moduli. The additional terms γ (ω) and H are
defined by:

γ (ω) = ρM + ρ̃(ω)H − 2ρ f C

HM − C2
,

H = KU + 4
3

G. (8)

The four mechanical moduli are related to the homoge-
nized porous solid. KU, C and M are formulated as:

KU = φKd + (1 − (1 + φ)Kd/Ks)K f

φ(1 + �)
,

C = (1 − Kd/Ks)K f

φ(1 + �)
,

M = K f

φ(1 + �)
, (9)

where the term � is given by:

� = 1 − φ

φ

K f

Ks

(
1 − Kd

(1 − φ)Ks

)
, (10)
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where porosity φ is defined as the ratio between void and
total volume in the solid matrix. Kd, Gd, Ks and Kf are re-
spectively the frame bulk modulus, the frame shear modulus,
the grains bulk modulus and the effective fluid bulk modulus.
The undrained shear modulus G is assumed to be equal to dry
shear modulus Gd.

We consider that the solid material for both shale and
sand layers consists of a mix of clay and quartz grains. We
compute the grains bulk moduli Ks by averaging the bounds
(Hashin and Shtrikman 1963). The grain density ρs is com-
puted using an arithmetic average:

ρ = (1 − φ)ρs + φρ f . (11)

The extended Biot–Gassmann formulation given by Pride
(2005) is valid over a wide range of frequency because it in-
volves Johnson et al. (1987) model which gives a frequency-
dependent dynamic permeability k(ω). It allows for correcting
the seismic permeability and differentiates the viscous and in-
ertial predominant effects at low and high frequency domain
(Dupuy et al. 2016). The dynamic permeability k(ω) is ex-
pressed by Johnson et al. (1987):

k(ω) = k0√
1 − 1

2 i ω

ωc
− i ω

ωc

, (12)

where ω is the angular frequency. ωc is the characteristic an-
gular frequency that characterizes the maximum attenuation
peak. k0 is the hydraulic permeability and i is the complex
number. The characteristic frequency ωc can be formulated
with the cementation factor m, the effective fluid viscosity η

and the effective fluid density ρf (Adler, Jacquin and Thovert
1992) such as:

ωc = η

ρ f k0φ
−m

. (13)

Then, we can define frequency-dependent flow resistance
term ρ̃(ω) that is involved in the slowness equation (6) and is
defined by:

ρ̃(ω) = iη
ωk(ω)

. (14)

For the monitor step, it is assumed that the fluid phase
in the pore space can be treated as a single-phase mixture
of brine and CO2, with effective properties computed using
Brie mixing law (Brie et al. 1995) for fluid bulk modulus,
Teja and Rice equation (Teja and Rice 1981) for effective vis-
cosity and arithmetic average (Voigt 1928) for fluid density.
The sensitivity tests provided in Dupuy et al. (2016) show
that the fluid bulk modulus is the main factor affecting the
P-wave velocity change. The Brie equation involves an empir-
ical exponent e:

K f = (KCO2 − KW)Se
W + KCO2, (15)

where SW denotes the brine saturation, KCO2 and KW denote
the CO2 and brine bulk moduli, respectively. The exponent
e can vary between 1 and 40 (Brie et al. 1995), which cor-
responds to various mixture trends (Fig. 1). For instance, the
lower bound (e = 40) stands for the so-called uniform mixing
(the two fluids are mixed at the finest scale), while the up-
per bound (e = 1) stands for the so-called patchy mixing. It
is worth noting that the patchy mixing is related to empirical
observations and its definition is variable depending on the au-
thors. The exponent e is proposed to be equal to 3 (Brie et al.

Figure 1 P-wave velocity variation with brine saturation for various patchiness exponents.
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1995) and 5 (Carcione and Picotti 2006) to match the case
related to gas and brine mixture. The Brie exponent e is some-
times called patchiness exponent (Papageorgiou, Amalokwu
and Chapman 2016). The set of rock physics model equa-
tions (6)–(14) constitute the forward model that allows us to
compute visco-elastic attributes (mainly P-wave velocity) from
rock physics properties (solid and fluid phases and rock frame
properties).

To solve the RPI problem, we use a semi-global op-
timization method (Neighbourhood Algorithm (NA) (Sam-
bridge 1999)) to minimize the discrepancy between observed
data and calculated data obtained by forward modelling. The
method searches for the global minimum over the whole
model space in a partially random way and the search process
is guided by each iteration towards areas with a lower misfit.
The scalar misfit function C(m) between the observed data
dobs and the estimated data g(m) from the forward modelling
can be given as an L2 norm:

C(m) =
[
(dobs − g(m))T(dobs − g(m))

]
. (16)

m is the model vector describing the model space. The
NA algorithm has only two control parameters: the number
of new models at each iteration and the resampling size of
Voronoı̈ cells. The misfit of the previous iteration decides the
new sampling of Voronoı̈ cell for the next iteration. Sambridge
(1999) and Dupuy et al. (2016) provide more details on the
NA algorithm and the RPI, respectively.

The RPI process give estimates of selected parameters
with the related uncertainty. The sensitivity study by Dupuy
et al. (2017) shows that the estimation of CO2 saturation from
P-wave velocity input only is not well constrained when the
CO2 saturation is high (it is directly related to the shape of
the P-wave velocity versus saturation curve, see Fig. 1). Exam-
ples of the misfit function shapes for the estimation of frame
parameters and saturation are given in sensitivity tests. By as-
suming a Gaussian distribution of estimated models, we can
estimate the mean value and associated standard deviations
to assess the uncertainty.

GEOLOGICAL BA C K GR OUN D

Since 1996, about 0.9 million tons of CO2 is annually injected
into the Utsira formation at Sleipner at a depth of 1012 m be-
low the sea level through a deviated well (Arts et al. 2008).
The thickness of the Utsira sandstone is about 300 m and is
surrounded by the Nordland shale on the top and the Horda-
land shale on the bottom. The caprock is assumed to be a good
quality seal with a low probability of leakage (Chadwick et al.

2004). The Utsira formation consists of late Miocene to early
Pliocene dominantly sandy unit and some shaly intra-reservoir
horizons (Chadwick et al. 2000). It is a highly porous, un-
consolidated, permeable sandstone that shows good reservoir
properties for high injection rate through only one single well
(Michael et al. 2010). The intra-reservoir shale layers are very
thin and can be less than 1 m thick (Zweigel 2000).

To constrain our rock physics inversion (RPI), we
need to determine a set of realistic a priori rock physics
properties. These parameters are defined based on the exist-
ing geological studies on Sleipner field. Grain moduli Ks of the
Utsira sandstone and the Nordland shale are calculated by the
Hashin–Shtrikman bounds method (Hashin and Shtrikman
1963; Mavko, Mukerji and Dvorkin 2009). Grain density ρs

for the Utsira sandstone and the Nordland shale are computed
using volume weighted averages. The cementation parameter
m (Pride 2005) is assumed to be equal to 1 for the uncon-
solidated sandstone and mudstone. As discussed in sensitivity
tests by Dupuy et al. (2016), the cementation factor has a neg-
ligible influence on P-wave velocity. The permeability for the
Utsira formation is high and ranges from 1 × 10−12 m2 to 3 ×
10−12 m2 (Boait et al. 2012). We use an average permeability
of 2 × 10−12 m2 for Utsira formation. The permeability of
Nordland shale is defined from laboratory data and assumed
to be equal to 1.48 × 10−17 m2. The grains and rock frame
properties of Utsira sandstone and Nordland shale are given
in Table 1.

We consider a CO2 and brine mixture after CO2 injection
and a fully brine saturated medium before CO2 injection for
the saturating fluids properties. The bulk modulus of brine is
equal to 2.3 GPa at reservoir conditions (Boait et al. 2012),
and the density of brine is assumed to be equal to 1030 kg/m3

(Mavko et al. 2009) at reservoir temperature and pressure.
Most of the CO2 is stored in a supercritical state (Arts et al.

2008) and we use a relatively high density of 700 kg/m3 for the
CO2 phase (Lindeberg 2013). Since the initial pore pressure of
8 MPa is considered (Furre and Eiken 2014) and the reservoir
temperature is ranging between 27°C (top Utsira formation)
and 37°C (near injection point), the range of KCO2 is estimated

Table 1 Utsira sandstone and Nordland shale properties

Grain Properties Rock Frame Properties

Ks ρs m ko

Lithology GPa kg/m3 m2

Utsira Sandstone 39.29 2663.5 1 2 × 10−12

Nordland Shale 22.6 2390 1 1.48 × 10−17
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Table 2 Brine and CO2 properties

Fluid Properties

ƞ ρf Kf

Fluid phase Pa.s kg/m3 GPa

Brine 6.9 × 10−4 1030 2.3
CO2 6 × 10−5 700 0.075

to be equal to 0.02 GPa to 0.075 GPa (Ghaderi and Landrø
2009). We use a value of 0.075 GPa for bulk modulus of CO2

(Lindeberg 2013) regarding in situ pressure and temperature
conditions. The viscosity of CO2 is discussed in many papers
and depends on the temperature and pressure (Singh et al.
2010; Gasda et al. 2012). However, the effective viscosity in-
fluence on seismic velocity is minor at low frequency (Dupuy
and Stovas 2016). We use 6 × 10−5 Pa.s for the CO2 viscosity.
The fluids properties used in the case study are summarized
in Table 2. As CO2 is under a supercritical state and reser-
voir pressure and temperature conditions are known, we have
chosen to fix the CO2 properties and not estimate them. Oth-
erwise, sensitivity tests have been carried out to estimate CO2

properties in addition to saturation (Dupuy et al. 2017). The
tests show that the CO2 saturation estimates are only slightly
affected if CO2 properties are unknown.

S E N S I T I V I T Y T E S T S

Sensitivity tests for baseline parameters, i.e. porosity and rock
frame moduli before CO2 injection are carried out. The for-
ward model is based on the extended Biot–Gassmann theory
with fully brine saturated Utsira sandstone, and is described
in the methodology part. The grain and frame properties for
Utsira sandstone and brine properties are given in Tables 1
and 2.

Figure 2 (bottom panel) shows a point test where we esti-
mate frame bulk modulus, frame shear modulus and porosity
using a different combination of input data (P-wave, S-wave
velocity and density). Examining the size and the shape of
the low misfit area in these sensitivity plots allows assessing
the uncertainty of each parameter estimate and how well these
estimates are constrained depending on which input data are
used. The computation of S-wave velocity as well as extensive
sensitivity tests are described in details in Dupuy et al. (2016).
In Fig. 2, the low misfit area is wider when only P-wave veloc-
ity is used than when P-wave, S-wave velocities and density are
input data. The dry shear modulus is a lot better constrained
when using VP, VS and ρ inputs, but porosity and dry bulk

modulus have similar uncertainty. It is also worth noting that
mean values of all low misfit models (pink models) are quite
close to the true value, even when only P-wave velocity is
used. This is a promising conclusion for the real data applica-
tion where acoustic full waveform inversion is used to derive
P-wave velocity maps.

Similar sensitivity tests are given for CO2 saturation and
Brie exponent estimates in Fig. 3. We observe that the CO2

saturation is correctly estimated when the saturation is low,
while it is more difficult to get an accurate estimate when CO2

saturation is high. This effect is directly related to the shape of
the VP-SCO2 curve (Fig. 1) where we have a quick drop of VP

as soon as little CO2 is present in the porous medium (fizz-gas
effect). However, for Brie exponent larger than 5 (fluid mix-
ture is becoming more and more homogeneous), a change of
CO2 saturation is not affecting P-wave velocity when this sat-
uration is greater than 30–50%. The inversion is consequently
more difficult to constrain for high CO2 saturations and the
related uncertainty is larger. It is worth noting that this sen-
sitivity test is carried out using VP input only. Supplementary
tests show that using additional input help to mitigate this
issue of non-linearity (Dupuy et al. 2017). This first test is
assuming that the fluid mixing law is known (Brie exponent
equal to 5). If this patchiness exponent is inverted together
with CO2 saturation (bottom panel of Fig. 3), we observe a
trade-off between these two parameters that is expected as
only P-wave velocity is used as input. The uncertainty of the
saturation estimates is consequently larger.

SLE IPNER T EST CASE

The two-step workflow is carried out for data before (1994
vintage, baseline) and after CO2 injection (2008 vintage, mon-
itor). For both vintages, seismic data from inline 1836 (north-
south orientation, close to injection point) is extracted. The
applied processing workflow aims at improving the signal to
noise ratio without affecting the amplitudes of the data. It
includes the removal of the t2 divergence compensation, data
muting before the first arrivals and the selection of data with
an offset higher than 420 m. The available data include off-
sets up to 1800 m. For the initial velocity model, we assume a
horizontal sea bottom and use a stacking velocity model con-
verted to interval velocity in depth and smoothed. The model
is 7 km long and has a depth of 1.35 km. It is defined on a
regular 3 m squared grid to ensure sufficient accuracy when
high frequencies are considered. To mitigate the non-linearity
of full waveform inversion, we perform the inversion from
low to high frequencies using frequency components up to
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Figure 2 Estimation of dry shear modulus, dry bulk modulus and porosity from P- wave velocity (top panels) and from P-wave and S-wave
velocities and density (bottom panel). The red cross indicates the true model. The colour of each dot represents the absolute misfit value for
each computed model (between 0 and 0.01).

33 Hz to derive a highly resolved P-wave velocity model. A
target region around the Utsira sandstone is then used as input
to perform rock physics inversion.

FWI results

Figure 4(a,b) shows the P-wave velocity maps derived by
full waveform inversion (FWI) for both baseline and moni-
tor cases, respectively. Selected interpreted horizons (corre-
sponding to the seabed, the top Pliocene, the intra Pliocene,
the top of Utsira sand wedge, the top of Utsira and the base
of Utsira) are also plotted for reference. The top of Utsira

sand wedge is an eastward thickening package, which is sepa-
rated from the main sand part by a shale layer (Zweigel et al.

2004). As observed in Romdhane and Querendez (2014) us-
ing a different inline, the models derived from FWI show a
clear improvement in term of resolution. Figure 4(b) shows
clear indications about the lateral extent and geometry of
the CO2 plume. Figure 4(c) shows the corresponding time-
migrated section converted to depth using a simple time to
depth relationship based on well data situated at around 800
m distance from the two-dimensional line used. The push-
down of the reflection beneath the CO2 plume is clearly
visible.

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17



8 H. Yan et al.

2
= 0.80

2
= 0.15

2
= 0.80, = 5 2

= 0.15, = 5

10010
Number of models

 0.1

 0.3

 0.7

 0.9

0 0.01Misfit

 0

B
rin

e 
sa

tu
ra

tio
n

 0.5

10010

 0.1

 0.3

 0.7

 0.9

0 0.01Misfit

 0
Number of models

B
rin

e 
sa

tu
ra

tio
n

 0.5

5

10

15

20

25

30

35

0 0.01Misfit

5

10

15

20

25

30

35

0 0.01Misfit

0.6 0.8 10.40.2
Brine saturation

B
rie

 e
xp

on
en

t

Figure 3 Estimation of brine saturation SW (top panels) and estimation of brine saturation and patchiness exponent (bottom panels) from
P-wave velocity (Figures from Dupuy et al. 2017). The blue cross indicates the model with the lowest misfit and the red cross indicates the true
model. Below each panel are indicated the true value for CO2 saturation and Brie exponent. The colour of each dot represents the absolute
misfit value for each computed model (between 0 and 0.01; all models with misfit higher than 0.01 are clipped).

Close-up of the target region at the depth of Utsira reser-
voir where the CO2 is expected to accumulate are shown in
Fig. 4(d,e) with interpreted horizons corresponding to the top
of Utsira sand wedge, the top of Utsira and to the base of
Utsira from top to bottom. For the baseline case, two thick
low-velocity layers can be observed. These layers are probably
showing high porosity unconsolidated sandstones where the
CO2 is expected to migrate after injection. For the monitor
case, we observe thin low velocity layers that can be associ-
ated with the accumulation of CO2. The velocity pushdown
effect at the base of the Utsira can also be observed. The better
resolution of the shale-sand interlayers is probably related to
the higher contrast between the slow-velocity CO2 plume and

the surrounded high-velocity brine-saturated reservoir, shale
overburden and interbedded layers. It is worth noting that the
velocities of the overburden layers (just above Utsira reservoir)
are slightly lower in the monitor case, while no effect related
to CO2 anomaly should be observed. In addition, velocity dif-
ferences observed below the reservoir are not meaningful of
any physical change because CO2 migration is driven by buoy-
ancy effect. These uncertainties in velocity can be partly due to
some smearing effects (Queiber and Singh 2013; Romdhane,
Querendez and Ravaut 2014) that can lead to overestimation
of velocities in the CO2 plume (i.e. underestimation of veloc-
ity change) observed in Utsira sandstone, and to the limited
available offset range (maximum of 1800 m).
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Figure 4 (a) P-wave velocity model of baseline vintage (1994) derived by FWI, (b) P-wave velocity model of monitor vintage (2008) derived by
FWI. (c) Time migrated section converted to depth of monitor vintage (2008). (d, e) Close-ups around the reservoir where CO2 is injected for
(d) baseline and (e) monitor models. The injection point is located at 1012 m deep. The FWI has been carried out with limited offset (1800 m)
with frequencies inverted up to 33 Hz. The black lines (and blue lines in (c)) correspond to selected interpreted horizons. For the full sections
(a, b, c), the black lines are indicating the seabed, the top Pliocene, the intra Pliocene, the top of Utsira sand wedge, the top of Utsira and the
base of Utsira from top to bottom. For the close-up sections (d, e), the black lines are indicating the top of Utsira sand wedge, the top of Utsira
and the base of Utsira from top to bottom. The base of the Utsira taking into account the pushdown effect is added to (c).
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Baseline dataset: Estimation of rock frame properties

We apply the rock physics inversion (RPI) on baseline data
considering that the porous medium is saturated with brine.
Prior geological information is helpful to constrain the es-
timation of rock frame properties (Dupuy et al. 2016).
The RPI is applied to the full waveform inversion de-
rived P-wave velocity model to estimate rock frame mod-
uli (Kd, Gd) and porosity φ for the reservoir where the
CO2 plume is expected to accumulate. The inversion ranges
are given as: 0.1 GPa < Kd < 10 GPa, 0.01 GPa <

Gd < 10 GPa, 0 < φ < 0.45. The inversion frequency is
30 Hz.

The estimated bulk frame modulus, shear frame modulus
and porosity and associated uncertainties are given in Figs 5

and 6. The bulk and shear frame moduli within the two low-
velocity sand layers vary from 1 to 3 GPa with ±1 to 1.5 GPa
uncertainty and from 1 to 1.5 GPa with ±0.9 to 1.2 GPa un-
certainties, respectively. The surrounding layers (interpreted
as being thin shale interbedded layers and the overburden lay-
ers) show higher values for both moduli (3 to 6 GPa with ±1.5
to 2.5 GPa for the bulk modulus and 2 to 2.5 GPa with ±1.15
to 1.5 GPa for the shear modulus). The porosity varies from
0.30 to 0.35 with ±0.05 to 0.075 uncertainty in the sands,
while it shows lower values in the surrounding layers (0.20 to
0.25 with ±0.075 to 0.10 uncertainty). It is worth noting that
we can observe the imprint of the a priori parameters (grain
density, grain bulk moduli and permeability) on the porosity
map (Fig. 5). It is also noticed that the high porosity layers are
slightly shifted compared to the interpreted layers. This can be
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Figure 5 From top to bottom: frame bulk modulus Kd, frame shear modulus Gd and porosity φ. The black lines are figuring the interpreted
horizons, i.e. the top of Utsira sand wedge, the top of Utsira and the base of Utsira from top to bottom.
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Figure 6 From top to bottom: inversion uncertainty of frame bulk modulus Kd, frame shear modulus Gd and porosity φ. The black lines are
figuring the interpreted horizons, i.e. the top of Utsira sand wedge, the top of Utsira and the base of Utsira from top to bottom.

caused by a partially erroneous time to depth conversion of
interpreted horizons and related to the smearing effect ob-
served in full waveform inversion (FWI) results. However,
knowing that expected resolution of FWI is around half a
wavelength that corresponds to approximately 30 m for a
frequency of 33 Hz and a velocity of 2000 m/s, this depth
mismatch of 10 m maximum is in the range of uncertainty.
That is why we chose to not do any stretch matching of these
horizons.

Monitor dataset: Estimation of CO2 saturation and
patchiness exponent

After the estimation of rock frame properties, we focus on
the 2008 vintage dataset for the target region. Figure 7 shows
the maps of CO2 saturation using Brie rock physics model

with two exponent values (e = 1 and e = 5), and when e

is inverted together with saturation. Figure 8 shows the as-
sociated uncertainties of CO2 saturation for the three cases.
Figure 9 shows the estimation of patchiness exponent and its
associated uncertainty for the third case (joint inversion of
CO2 saturation and Brie exponent). The estimation of CO2

saturation using e = 1 (so-called patchy mixing) shows clear
CO2–brine-saturated regions, mainly around 880–970 m deep
with saturations reaching 0.90 ± 0.15–0.17 uncertainty. The
estimations of CO2 saturation within deeper sandstone layers
are lower than 0.50 with ± 0.12 to 0.17 uncertainty.

The estimation of CO2 saturation using exponent e =
5 also shows one high CO2–brine-saturated region (870–970
m deep). CO2 saturation in this layer varies from 0.30 to
0.70 with ±0.15 to 0.17 uncertainty. Especially, the high-
est uncertainty tends to be associated with the highest CO2
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Figure 7 From top to bottom: CO2 saturation estimated by RPI using patchiness exponent e = 1, e = 5 and exponent inverted (given in Fig. 9).

saturated regions. For example, at 910–940 m deep, the CO2

saturation is going up to 0.70 with ±0.17 uncertainty. We
can also see this distinct high CO2 saturated region at the
depth of approximately 900 m when we invert for the Brie
(or patchiness) exponent and CO2 saturation simultaneously.
In this case, the CO2 saturation is reaching 0.50 in this main
layer with an uncertainty around 0.22–0.25. The estimations
of CO2 saturations within the deeper sandstone layers vary
in the range of 0.20–0.30 with ±0.13 to 0.17 uncertainty.
It is worth noting that uncertainties related to CO2 satura-
tion estimates are higher in this third case, up to 0.25 in-
stead of 0.17 in the two first cases. The patchiness exponent e

within these CO2–brine-saturated layers is ranging from 4 to
33 with an uncertainty around 5–11. Again, the higher uncer-
tainty in CO2 saturation tends to be associated with the high
CO2 saturated regions, while lower uncertainty and higher
value in the estimation of the patchiness exponent tend to be

associated with the high CO2 saturated regions. For example,
the estimations of patchiness exponent vary in the range of
31–36 with ± 5 uncertainty at depth of 910–940 m where the
CO2 saturation is reaching 0.50. High CO2 saturation and
uniform mixing tend to happen at the same locations.

It is worth noting that there are large CO2 saturations
above the top Utsira in Fig. 7, especially for the case where
Brie exponent is equal to 1 (top panel). This feature in over-
burden should not be interpreted as leaking CO2. It is linked
to the low velocity patch (green-blue colours) observed in
Fig. 4(e). It is important to note that this high saturation value
is only visible for the patchy saturation case (e = 1) and that
the results of CO2 saturation estimates are affected by uncer-
tainties both related to the first (FWI) and second inversion
steps (RPI). The full waveform inversion (FWI) step is depen-
dent on data quality that is different for the baseline (1994
vintage) and monitor (2008 vintage) datasets, making any
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Figure 8 From top to bottom: inversion uncertainty of CO2 saturation estimated by RPI using patchiness exponent e = 1, e = 5 and exponent
inverted (given in Fig. 9).

quantification of 4D changes difficult. For this reason, we
opted for a parallel time-lapse FWI strategy. The baseline
data is used in our case to derive constraints on rock frame
properties in the reservoir. Smearing effect in FWI results
can also be a source of ’ghost’ changes above and below the
reservoir as noticed in Fig. 4. In addition, the overburden
shales have low porosity (<20%) and complex mineralogy,
so additional caution must be considered when looking
at CO2 saturations in the overburden because of greater
uncertainties in a priori constraints. Finally, Biot–Gassmann
theory combined with the effective fluid phase rock physics
model have been shown to be relevant for fluid substitution
in brine–CO2 saturated sands but its applicability for shales
is less straightforward (Queiber and Singh 2013; Bergmann
and Chadwick 2015; Dupuy et al. 2017; Falcon-Suarez et al.

2018). High CO2 saturation estimates in the overburden are

consequently not reliable and no conclusion of any leaking
CO2 should be derived from this result.

Figure 10 shows the one-dimensional profiles of CO2 sat-
uration and patchiness exponent for the different test cases.
The profile is extracted at an offset of 3240 m going through
the high CO2 saturation zone. The main CO2–brine saturated
layers appear between 900 and 950 m deep with CO2 satu-
ration ranging from 0.60 to 0.90. It is interesting that both
patchy mixing (e = 1 or e = 5 depending on authors) and uni-
form mixing (e = 40) models show CO2 saturations reaching
0.90. The CO2 saturation increases when the patchiness expo-
nent decreases, which is directly related to the shape of the ve-
locity versus saturation curves (Fig. 1). It is worth noting that
the results for exponent equal to 1 are enveloping the other
results showing more high-resolution variations. When we in-
vert patchiness exponent and CO2 saturation at the same time,
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Figure 9 From top to bottom: estimation of patchiness exponent and related uncertainty. The patchiness has been inverted together with CO2

saturation (given in Fig. 7, bottom panel).
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Figure 10 From left to right: 1D profiles of CO2 saturation estimation using different patchiness exponents, 1D profiles of CO2 saturation
estimation and related uncertainty for e = 5 and 1D profiles of patchiness exponent and related uncertainty. The 1D profiles are extracted for an
offset equal to 3240 m. The dotted lines correspond to the mean values and the dashed lines stand for the mean value ± one standard deviation.

we observe more oscillations due to the under-determined in-
version system. The uncertainty for the estimation of CO2

saturation varies in the range of ±0.12–0.17, when we are
using a known Brie exponent. When we invert the CO2 sat-
uration and the patchiness exponent together, the associated
uncertainty of CO2 saturation goes up to ±0.25.

D I S C U S S I O N

In our study, velocity models from both the baseline and mon-
itor datasets and these velocity models are used as input to
infer rock physics properties. The inversion of the monitor
dataset provides clear indications about the geometry and
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lateral extent of the CO2 plume with the lowest P-wave ve-
locities being in the uppermost layers. We opted for a parallel
time-lapse strategy where models from velocity analysis are
used as initial models for the inversion. Alternative strategies
(Asnaashari et al. 2015), including the use of a sequential
time-lapse inversion and the introduction of a priori informa-
tion (for example about the overburden), can contribute to
the improvement of the derived models.

The values of CO2 saturation obtained for inline 1836
are higher than those obtained in Dupuy et al. (2017). The
inline data used in our study is located very close to the injec-
tion point, while the one-dimensional section shown in Dupuy
et al. (2017) is located approximately 500 m away from the
injection point. For comparison, Queiber and Singh (2013)
get values up to 0.90 using 2006 vintage, while Golding et al.

(2011) suggest that saturation is probably higher than 0.30.
Recent work by Ghosh et al. (2015) gives estimations between
0.20 and 0.80 depending on the mixture type (patchiness ex-
ponent). In previous tests using the same methodology shown
by Dupuy et al. (2017), rock frame properties are derived
from well-log data acquired at the injection well. The effect
of a priori properties (i.e., rock frame, grains and fluid pa-
rameters) on CO2 saturation estimates can strongly affect the
results, and these a priori parameters should be handled with
care. Estimating them from baseline data can be a better so-
lution. It is anyway worth keeping in mind that uncertainty
related to baseline estimates (bulk and shear moduli as well
as porosity) is not negligible and is a key factor in the CO2

saturation quantification. Even if our sensitivity tests show
that the mean values of these baseline properties estimated
from P-wave velocity only are close to the true value, uncer-
tainty is not negligible and other sensitivity tests show that the
CO2 saturation can be changed by 0.10 to 0.20 if the baseline
properties are different.

Regarding the mixture distribution, Sen, Ghosh and
Vedanti (2016) use a capillary pressure equilibrium theory and
show that the CO2 distribution at Sleipner is more uniform
for high CO2 saturation and more patchy for low CO2 satu-
ration. We found similar trends in our results. For example,
the patchiness exponent is higher for the highly CO2 saturated
layers, which is indicating a more uniform mixing while the
patchiness exponent is smaller for the less CO2 saturated lay-
ers. Ghosh et al. (2015) also found that the CO2 phase is not
fully patchy or uniformly saturated in the reservoir. Zhang,
Lu and Zhu (2014) and Chadwick et al. (2010) propose an
approach using history-matching simulations and 4D seismic
data. They get higher values of CO2 saturation with some val-
ues up to 0.98. In our study, the highly saturated layers show

saturations varying between 0.60 and 0.90 with an uncer-
tainty of 0.12–0.20. Lumley et al. (2008) suggest that it is diffi-
cult to quantify the CO2 saturation when it is larger than 0.30.
In our study, we also observe that the estimated uncertainty is
higher for higher CO2 saturation (Figs 1 and 3). Relevant un-
certainty assessment and quantification still need to be carried
out. Proper uncertainty propagation from seismic imaging (us-
ing the method suggested in Eliasson and Romdhane (2017)
for example) to rock physics inversion can be taken into ac-
count using a fully Bayesian formulation. More constraints to
the inversion process could be added to mitigate the trade-off
between saturation and patchiness exponent (standing for the
rock physics model itself). For example, using additional in-
puts from seismic inversion (attenuation, shear wave velocity,
AVO attributes) or from other geophysical techniques (grav-
ity, CSEM) can lead to reduce the non-uniqueness of the in-
version (Gao, Abubakar and Habashy 2012; Liang, Abubakar
and Habashy 2016; Subagjo et al. 2018).

CONCLUSIONS

We derive a quantitative spatial distribution of CO2 satura-
tion through the combination of full waveform inversion and
rock physics inversion. The two-step workflow is applied to
a selected inline from both baseline and monitor surveys at
Sleipner. We first estimate rock frame properties based on
baseline data that are then used as an input to the monitor
vintage study. We find that CO2 saturations can reach 0.60–
0.90 ± 0.12–0.25 near the injection point when the patchiness
exponent is assumed to be known. The uncertainty of the CO2

saturation estimation is relatively low for most cases but tends
to increase for higher CO2 saturations. We show the possibil-
ity to estimate the CO2–brine mixture law by estimating the
patchiness exponent and CO2 saturation simultaneously. The
patchiness exponent is globally varying from 5 to 33, which
indicates a distribution of CO2 and brine between fully patchy
(e = 1) and fully uniform (e = 40) mixings. Uniform mixing
prevails when CO2 saturation is very high.
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algorithmöII. Appraising the ensemble. Geophysical journal inter-
national 138, 727–746.

Sen A., Ghosh R. and Vedanti N. 2016. Saturation estimation from
4D seismic data from Sleipner Field by a capillary pressure-based
rock-physics model. SEG technical program, expanded abstracts
3314–3321.

Singh V.P., Cavanagh A., Hansen H., Nazarian B., Iding M. and
Ringrose P.S. 2010. Reservoir modeling of CO2 plume behavior
calibrated against monitoring data from Sleipner, Norway. SPE An-
nual Technical Conference and Exhibition, Florence, Italy, Septem-
ber 2010. Society of Petroleum Engineers.

Subagjo I., Dupuy B., Park J., Romdhane A., Querendez E. and Stovas
A. 2018. Joint rock physics inversion of seismic and electromag-
netic data for CO2 monitoring at Sleipner. 24th European Meeting
of Environmental and Engineering Geophysics, Porto, Portugal,
Expanded Abstracts.

Teja A. and Rice P. 1981. Generalized corresponding states method
for the viscosities of liquid mixtures. Industrial & engineering
chemistry fundamentals 20, 77–81.

Voigt W. 1928. Lehrbuch der Kristallphysik. Berlin: Leipzig.
White D. 2013. Toward quantitative CO2 storage estimates from

time-lapse 3D seismic travel times: an example from the IEA GHG
Weyburn–Midale CO2 monitoring and storage project. Interna-
tional journal of greenhouse gas control 16, S95–S102.

Williams G. and Chadwick A. 2012. Quantitative seismic analysis of
a thin layer of CO2 in the Sleipner injection plume. Geophysics 77,
R245–R256.

Zhang G., Lu P. and Zhu C. 2014. Model predictions via history
matching of CO2 plume migration at the Sleipner Project, Norwe-
gian North Sea. Energy procedia 63, 3000–3011.

Zweigel P. 2000. Reservoir geology of the storage unit in the Sleipner
CO2-injection case. SINTEF.

Zweigel P., Arts R., Lothe A.E. and Lindeberg E.B. 2004. Reservoir
geology of the Utsira Formation at the first industrial-scale un-
derground CO2 storage site (Sleipner area, North Sea). Geological
society publications 233, 165–180.

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–17


